串口彩色液晶模块

指令集 MIS-E V1.0

	版本信息								
时间	描述								
2011-12-06	V1. 0	创建							

目 录

串口彩	色液晶模块	1
串口彩	色液晶模块指令集 MIS-W	3
1. 柞	死述	3
2.	串口说明	3
2.1	串口工作模式	3
2.2	数据帧架构	3
2.3	通信帧缓冲区	3
2.4	字节传送顺序	3
3. 扌	旨令速查表	3
4. 扌	旨令集说明	6
4.1	握手指令(0x00)	6
4.2	设置当前调色板(0x40)	6
4.3	设置字符间距(0x41)	6
4.4	文本显示(0x54,0x55,0x6E,0x6F,0x98)	7
4.4.1	标准文本显示(0x54,0x55,0x6E,0x6F)	7
4.4.2	文本显示(0x98)	7
4.5	显示点(0x50,0x51,0x74)	8
4.5.1	置点(0x50,0x51)	8
4.5.2	动态曲线显示(0x74)	9
4.6	连线显示(0x56,0x5D,0x75,0x76)	9
4.6.1	指定点连接(0x56,0x5D)	9
4.6.2	频谱显示(0x75)	10
4.6.3	折线图显示(0x76)	11
4.7	画圆指令(0x57)	11
4.8	区域显示(0x59,0x69,0x5A,0x5B,0x52)	12
4.8.1	矩形框和矩形区域显示(0x59,0x69,0x5A,0x5B)	12
4.8.2	全屏清屏(0x52)	13
4.9	图片和图标显示(0x70,0x71)	13
4.9.1	图片显示到底层(0x70)	13
4.9.2	图片显示到顶层(0x71)	13
4.9.3	剪切图片显示(0x9b)	14
4.9.4	连续图片播放显示(0x9c)	
4.10	背光控制(0x5E,0x5F)	
4.10.1	背光关闭(0x5E)	15
4.10.2	背光打开(0x5F)	15
4.11	参数配置(0xE0)	15
4.12	触摸屏控制(0xE4,0x73)	15
4.12.1	, , , , , , , , , , , , , , , , , , , ,	
4.12.2		
4.12.3	,	
4.12.4	触摸屏返回数据(0x73)	16
4.13	蜂鸣器控制(0x79)	
4.14	键盘控制(0x71)	16

串口彩色液晶模块指令集 MIS-W

1. 概述

该指令集适用于中显信息科技有限公司自主研发生产的串口系列 智能彩色液晶显示模块,对模块的各个串口控制指令的使用和注意事项进行详细的说明,并给出相应的参考实例。

2. 串口说明

2.1 串口工作模式

串口智能彩色液晶显示模块均采用异步、全双工串口(UART),串口模式为8n2,即每个数据传送采用11个位:1个起始位,8个数据位(低位在前传送),2个停止位。

上电时,串口波特率由用户预先设定,下电后也会保持设定。范围是 1200-115200bps,具体设置方法参考 0xE0 指令。

2.2 数据帧架构

串口数据帧由4个数据块组成,如下表所述:

数据块	1 2		3	4				
举例	0xAA	0x70	0x01	0xCC 0x33 0xC3 0x3C				
说明	帧头,固定为 0xAA	指令	数据,最多 250 字节	帧尾,固定为 0xCC 0x33 0xC3 0x3C				

2.3 通信帧缓冲区

串口智能彩色液晶显示模块有一个 24 帧的通信缓冲区,通信缓冲区为 FIF0(先进先出寄存器)结构,只要通信缓冲区不溢出,用户可以连续传送数据给 AII 串口智能终端。

串口智能彩色液晶显示模块有一个硬件引脚(用户接口中的"BUSY"引脚)指示 FIF0 缓冲区的状态,正常时,UBSY 引脚为高电平(RS232 电平为负电压),当 FIF0 缓冲区只剩下 2 个帧缓冲区时,BUSY 引脚会立即跳变为低电平(RS232 电平为正电压)。

对于一般的应用,由于串口智能彩色液晶显示模块的处理速度很快,用户不需要判断 BUSY 信号状态。

但对于短时间需要传送多个数据帧的应用,比如一次需要刷新上百个屏幕参数,建议客户使用 UBSY 信号来控制串口数据发送,当 BUSY 信号为低电平时,就不要发送数据给串口智能彩色液晶显示模块。

如果用户在使用串口智能彩色液晶显示模块时,出现"丢帧"现象,即某些数据没有显示出来,可能就是缓冲区益处了,这时需要用示波器检测BUSY信号是否有跳变,如果有跳变,则需要减慢发送速度,或者增加硬件检测BUSY信号判断忙处理。

2.4 字节传送顺序

串口智能彩色液晶显示模块所有指令或者数据都是十六进制格式(HEX),对于字形(2字节)数据,总是采用高字节先传送的方式。

比如 X 坐标为 100, 其十六进制格式数据为 0x0064, 传送时, 传送顺序为: 0x00 0x64。

- ▶ 上行(TX) 用户发数据给串口智能彩色液晶显示模块,数据从用户接口的"TX"脚输入;
- ▶ 下行(RX) 串口智能彩色液晶显示模块发数据给用户,数据从用户接口的"RX"脚输出。

指令速查表

AL 18	t Ata		PP. A Shift born
→ 公米		投办	
77	り 切能	1H.4	1月 文 秋 1/4

系统	握手指令	0x00	无
	设置调色板	0x40	Fcor(2Byte) + Bcor(2Byte)
显示参数配置	设置字符显示间距	0x41	Xdis(1Byte) + Ydis(1Byte)
	16X16 点阵	0x54	Xadd(2Byte)+Yadd(2Byte)+String
	32X32 点阵	0x55	
文本显示	12X12 点阵	0x6e	
人 华亚小	24X24 点阵	0x6f	
	选择字库显示	0x98	Xadd(2Byte) + Yadd(2Byte) + Lib_ID(1Byte) + C_Mode(1Byte) + Fcor(2Byte) + Bcor(2Byte) + String
	背景色显示多个点	0x50	Xadd(2Byte)+Yadd(2Byte) +·····
FR F	前景色显示多个点	0x51	
置点	动态曲线显示	0x74	X(2Byte)+Ys(2Byte)+Ye(2Byte)+Bcor(2Byte)+Y0(2Byte)+Fcor0(2Byte)+ Y1(2Byte)+Fcor1(2Byte)+
	多个指定点用线段	056	Xadd(2Byte)+Yadd(2Byte) +······
	进行连接(前景色)	0x56	
夕处仍法处	多个指定点用线段	0Ed	
多线段连线	进行连接(背景色)	0x5d	
	频谱显示	0x75	XOadd(2Byte)+YOadd(2Byte)+Hmax+h1+h2+·····
	折线图显示	0x76	X0(2Byte)+Xdis(2Byte)+Y0(2Byte)+Y1(2Byte)+
画圆	画圆弧	0x57	Type(1Byte) + xadd(2Byte) + yadd(2Byte) + r(1Byte)
	前景色显示多个矩	0x59	Xs0(2Byte)+Ys0(2Byte)+Xe0(2Byte)+Ye0(2Byte)+
	形框	0.039	Xs1(2Byte)+Ys1(2Byte)+Xe1(2Byte)+Ye1(2Byte)+
	背景色显示多个矩	0x69	
区域操作	形框	0.03	
	多个指令区域清除	0x5a	
	多个指令区域填充	0x5b	
	整屏清屏	0x52	无
	底层显示图片(位	0x70	Photo_num(2Byte) + xadd(2Byte) + yadd(2Byte)
	号 0-373)		
	叠加层显示图片	0x71	Photo_num(2Byte) + xadd(2Byte) + yadd(2Byte)
	(位号 0-373)		
图片显示	从保存在终端的一	0x9b	Layer(1Byte)+Photo_num(2Byte)+Xs(2Byte)+Ys(2Byte)+Xe(2Byte)+Ye(2Byte)+Xdis(2Byte)
	幅图片剪切一部分		te)+Ydis(2Byte)
	显示(位号 0-373)		
	连续图片播放显示	0x9c	Layer(1Byte) + Mode(1Byte) + Timer(1Byte) + xadd(2Byte) + yadd(2Byte)
	(位号 0-373)		Photo_num_1(2Byte) + Photo_num_2(2Byte) + ······ + Photo_num_n(2Byte)
背光控制	背光关闭	0x5e	无
Li 기대포 IM	背光 PWM 调节	0x5f	无或 Pwm(1Byte)
	波特率设置、触摸		0x55+0xaa+0x5a+0xa5+Tft_id(1Byte)+Bps_set(1Byte)+Paral(1Byte)
参数配置	屏数据上传格式、	0xe0	
	背光控制模式		
触摸屏控制	校准模式	0xe4	0x55+0xaa+0x5a+0xa5
瓜山大/汁1工即	开关控制		0x66+0x99+0x69+0xff

		0x66+0x99+0x69+0x00
触摸屏按下后位	置 0x73	Xpos(2Byte) + Ypos(2Byte)
上传		

4. 指令集说明

4.1握手指令(0x00)

TX: AA 00 CC 33 C3 3C

RX: AA <version>

▶ 〈Version〉是当前串口彩色液晶模块终端版本号。

在上电初始化完成前,串口彩色液晶模块不会响应用户的指令,用户可以通过发送握手指令来判断 AII 串口智能终端是否已经上电初始化完成。

4.2设置当前调色板(0x40)

TX: AA 40 < Fcor > < Bcor > CC 33 C3 3C

RX:无

- ▶ 〈 Fcor >2 个字节: 前景色调色板, (16bit, 65K color)
- ▶ 〈 Bcor 〉2 个字节: 背景色调色板, (16bit, 65K color)
- ▶ 16bit 调色板定义 5R6G5B 模式,如下表所述:

16bit 调色板定义 5R6G5B 定义																
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Define	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B4	В3	B2	B1	В0
Deline	红色 0xF800					绿色 0x07E0					蓝色 0x001F					

该指令用于设置前景色和背景色。发送该指令后液晶屏不会立刻有显示颜色变化,只有发送其它涉及前景色/背景色显示的指令时,屏才会有色彩显示变化。

一旦设定好,除非重新设定,就会一直保持下来。

4.3设置字符间距(**0x41**)

TX: AA 41 <Xdis> <Ydis> CC 33 C3 3C

RX:无

- ▶ 〈Xdis〉1 个字节: X 方向的字符间距(列间距),取值范围 0x00-0x7F,默认值为 0x00;
- ▶ 〈Ydis〉1 个字节: Y方向的字符间距(行间距),取值范围 0x00-0x7F,默认值为 0x00;

一旦设定好,除非重新设定,就会一直保持下来。

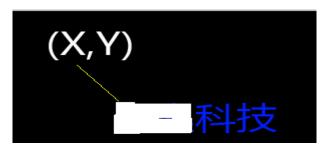
4.4文本显示(0x54,0x55,0x6E,0x6F,0x98)

4.4.1标准文本显示(0x54,0x55,0x6E,0x6F)

TX: AA <CMD> <X> <Y> <String> CC 33 C3 3C

RX: 无

➤ 〈CMD〉一个字节:


0x54: 显示 16*16 点阵字符 (AscII 码字符以半角 8*16 点阵显示);

0x55: 显示 32*32 点阵字符 (AscII 码字符以半角 16*32 点阵显示);

0x6E: 显示 12*12 点阵字符 (AscII 码字符以半角 6*12 点阵显示);

0x6F: 显示 24*24 点阵字符 (AscII 码字符以半角 12*24 点阵显示);

- ▶ ⟨X>2 个字节:显示字符的起始位置 X 坐标(第一个字符左上角坐标位置);
- ▶ 〈Y>2 个字节:显示字符的起始位置 Y 坐标(第一个字符左上角坐标位置);
- ➤ 〈String〉不大于 246 个字节:要显示的字符串,汉字采用 GB2312 编码,显示颜色由 0x40 指令设定,显示字符间距由 0x41 指令设定,遇到行末会自动换行。

4.4.2文本显示(0x98)

TX: AA 98 <Xadd> <Yadd> < Lib_ID > < C_Mode > < Fcor > < Bcor > < String> CC 33 C3 3C RX: 无

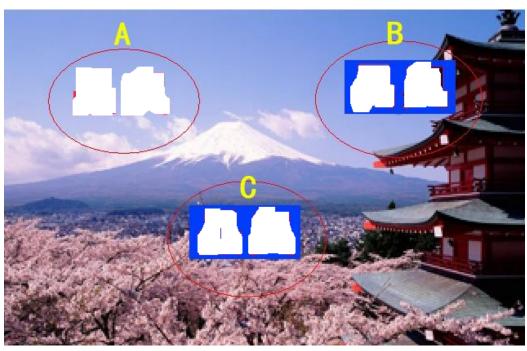
- ▶ 〈Xadd〉2 个字节:显示字符的起始位置 X 坐标(第一个字符左上角坐标位置)
- ▶ 〈Yadd〉2 个字节:显示字符的起始位置 Y 坐标(第一个字符左上角坐标位置)
- ▶ 〈 Lib_ID 〉 1 个字节:

0x00: 显示 8*8AscII 码

0x20: 显示 16*16 点阵字符 (AscII 码字符以半角 8*16 点阵显示)

0x21: 显示 32*32 点阵字符 (AscII 码字符以半角 16*32 点阵显示)

0x22: 显示 12*12 点阵字符 (AscII 码字符以半角 6*12 点阵显示)


0x23: 显示 24*24 点阵字符 (AscII 码字符以半角 12*24 点阵显示)

➤ < C Mode > 1 个字节:

位	取值	描述
Bit7	0	文本前景色不显示

	1	文本前景色显示
Bit6	0	文本背景色不显示
	1	文本背景色显示
Bit5-0	保留	保留

- ▶ 〈 Fcor 〉 2 个字节: 文本显示的前景色 (不会改变系统设置的调色板)
- ▶ 〈 Bcor 〉2 个字节: 文本显示的背景色 (不会改变系统设置的调色板)
- > 〈 String>不大于 239 个字节:要显示的字符串。采用 GB2312 编码,显示字符间距由 0x41 指令设定,遇到行末会自动换行。

前景色	显示	显示	不显示
背景色	显示	不显示	显示
显示效果	如图中 C	如图中 A	如图中 B

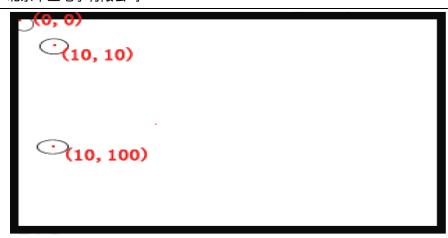
4.5显示点(0x50,0x51,0x74)

4.5.1置点(0x50,0x51)

TX: AA < CMD > < (x0,y0)(x1,y1)(x2,y2).....(xi,yi) > CC 33 C3 3C

RX: 无

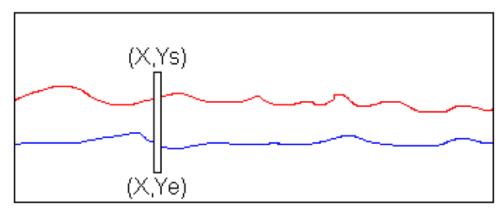
➤ 〈CMD〉1 个字节:

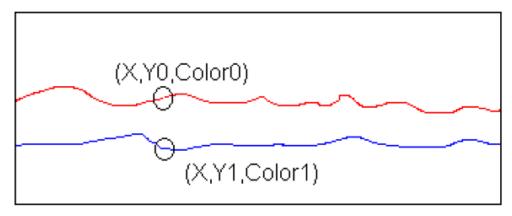

0x50:背景色(0x40 指令设置)显示点(删除点)

0x51:前景色(0x40指令设置)显示点(置点)

▶ ⟨(x0, y0) (x1, y1) (x2, y2) ······(xi, yi)⟩不大于 250 字节: 要显示的点坐标,一帧串口数据最多显示 62 个点。 举例:

指令 AA 51 00 00 00 00 00 0a 00 0a 00 0a 00 64 CC 33 C3 3C


表示用前景色显示 3 个点, 坐标分别为 (0,0), (10,10), (100,100), 显示效果如下:


4.5.2动态曲线显示(0x74)

TX:AA 74 <X> <Ys> <Ye> <Bcor> <(Y0,Fcor0) (Y1,Fcor1)(Yi,Fcori)> RX:无

本条指令主要用来方便用户在一个视窗中快速显示多条变化的(动态)曲线,AII智能显示终端按照下面的顺序来处理命令。 第一步:用〈Bcor〉颜色擦除从(X,Ys)到(X,Ye)的垂直线,把原来的显示内容清空,如图:

第二步:在(X,Yi)位置用〈Fcor〉颜色置点。

本指令不会改变用户调色板的属性。

4.6连线显示 (0x56 , 0x5D , 0x75 , 0x76)

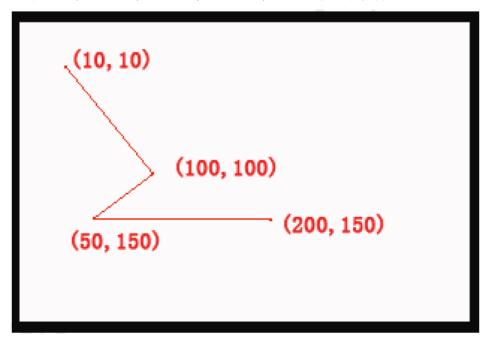
4.6.1指定点连接(0x56,0x5D)

TX: AA < CMD > < (x0,y0)(x1,y1)(x2,y2).....(xi,yi) > CC 33 C3 3C

RX: 无

➤ 〈CMD〉1 个字节:

0x56:使用前景色(0x40指令设置)把指定点用线段连接

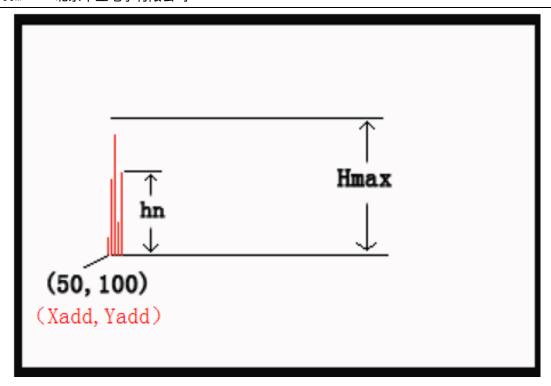

0x5D:使用背景色(0x40指令设置)把指定点用线段连接

▶ 〈(x0, y0) (x1, y1) (x2, y2) ······(xi, yi)〉不大于 250 字节: 连线点的坐标, 一帧串口数据最多连接 62 个点。

举例:

指令 AA 56 00 28 00 32 00 78 00 70 00 B1 00 3A CC 33 C3 3C

表示用前景色把 3 个点(10,10),(100,100),(50,150),(200,150)连线,显示效果如下:


4.6.2频谱显示(0x75)

TX: AA 75 < (Xadd , Yadd) > <Hmax> <h1 , h2.....hi> CC 33 C3 3C

RX:无

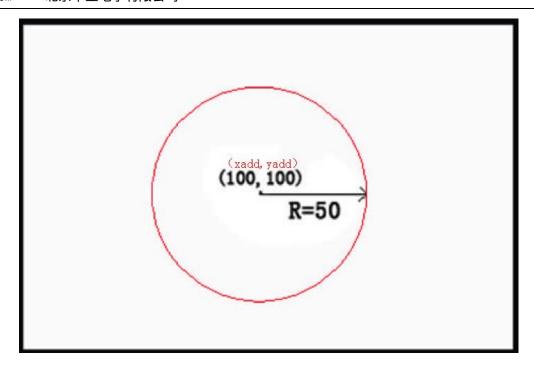
- ➤ 〈(Xadd, Yadd)〉4个字节: Xadd 为频谱 X 轴的起点坐标,每显示一根频谱后, X=X+1, Yadd 为频谱水平基准位置,每根谱线的 Y 轴起始坐标为 Yadd,终止坐标为(Yadd-hi)。
- ▶ 〈Hmax〉1 个字节:频谱的最大高度。
- ▶ 〈h1, h2······hi〉1 个字节(共不大于 245 字节): 单根谱线的高度。

显示谱线的颜色由 0x40 调色板指令设定,显示谱线时,谱线(hi 高度)会以前景色显示,空余谱线(Hmax-hi)会以背景色显示。

4.6.3折线图显示(0x76)

TX: AA 76 <X0> <Xdis> <Y0,Y1,Y2.....Yi> CC 33 C3 3C

RX: 无


- > <X0>2 个字节: 折线图的 X 轴起点坐标,每连线一点后, X0=X0+Xdis
- <Xdis>2 个字节: X 坐标的增量
- <Y0,Y1,Y2……Yi>2 个字节(共不大于 246 字节): 折线图的顶点坐标,使用前景色连线显示。 本指令的功能与 0x56 基本相似,只是 X 坐标自动计算,提高了连线速度。

4.7画圆指令(0x57)

TX: AA 57 <Type> < (xadd , yadd) > <r> CC 33 C3 3C

RX:无

- <Type>1 个字节: Type=0x00: 背景色画圆; Type=0x01: 前景色画圆(由 0x40 指令设置)。
- ➤ <(xadd, yadd) > 4 个字节: 圆心坐标。
- ▶ <r>1 个字节:圆的半径。

4.8区域显示 (0x59 , 0x69 , 0x5A , 0x5B , 0x52)

4.8.1矩形框和矩形区域显示(0x59,0x69,0x5A,0x5B)

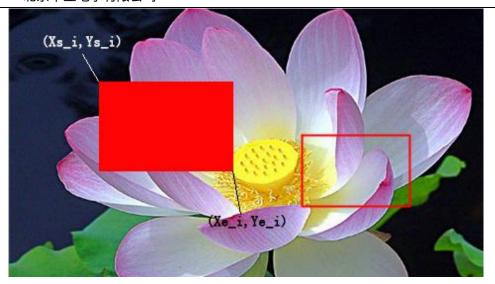
TX: AA <CMD> <(Xs_0,Ys_0),(Xe_0,Ye_0)>......<(Xs_i,Ys_i),(Xe_i,Ye_i)> CC 33 C3 3C RX:无

➤ <CMD>1个字节:

0x59 以前景色(0x40 指令设置)显示矩形框,显示的线宽是1个点阵;

0x69 以背景色(0x40指令设置)显示矩形框,显示的线宽是1个点阵;

0x5A 以背景色(0x40指令设置)填充矩形区域;


0x5B 以前景色(0x40指令设置)填充矩形区域;

▶ <(Xs_i,Ys_i),(Xe_i,Ye_i)>8 个字节:表示显示区域。(Xs_i,Ys_i)是矩形框或矩形区域的左上角坐标,(Xe_i,Ye_i)是矩形框或矩形区域的右下角坐标。

举例:

AA 5B 00 64 00 64 00 01 2C 00 C8 CC 33 C3 3C

把左上角坐标(100,100)到右下角坐标(300,200)的区域用前景色填充,效果如下:如果在指令中包含多对左上角和右下角坐标,显示效果将有多个矩形框被填充。

4.8.2全屏清屏(0x52)

TX: AA 52 CC 33 C3 3C

RX:无

使用背景色(0x40指令设置)把全屏填充。

4.9图片和图标显示(0x70,0x71,0x9b,0x9c)

在图片显示中引入了层的操作。分别为底层和顶层,两层独立操作。底层作为图片层,只能显示图片; 顶层作为叠加层,既可以显示图片, 还可以显示字符、自绘图形。

显示原理:底层为图片显示层,使用图片显示指令对其操作;其它显示的指令均是在项层操作;当项层色彩值操作为 0x0000 (黑色值,系统保留)时,此区域将透过显示底层色彩。

4.9.1图片显示到底层(0x70)

TX: AA 70 < Photo_num > <xadd> < yadd>CC 33 C3 3C

RX:无

< Photo_num >2 个字节:保存在智能终端 Flash 存储器的图片位号。

<xadd> < yadd>4 个字节:(x,y)表示图片显示的坐标值

在以(xadd,yadd)为起点的位置显示 Flash 中预存的第 Photo_num 幅图片。一般客户使用该指令显示图片到底层。使用该指令显示图片时,需要把相应显示区域顶层清屏为 0x0000。

举例:

AA 70 00 0A 00 00 00 00 CC 33 C3 3C

将保存在10号位置的图片显示在底层。

4.9.2图片显示到顶层(0x71)

TX: AA 71< Photo_num > <xadd> < yadd>CC 33 C3 3C

RX:无

< Photo_num >2 个字节:保存在智能终端 Flash 存储器的图片位号。

<xadd> < yadd>4 个字节:(x,y)表示图片显示的坐标值

在以(xadd,yadd)为起点的位置显示 Flash 中预存的第 Photo_num 幅图片。一般客户使用该指令显示图片到顶层。使用该指令显示图片时,色彩不为 0x0000 的区域将会覆盖底层色彩。

举例:

AA 71 00 0A 00 00 00 00 CC 33 C3 3C

将保存在10号位置的图片显示在顶层。

4.9.3剪切图片显示(0x9b)

TX: AA 9b <Layer> < Photo_num > <Xs> <Ye> <Ye> <Xdis> <Ydis> CC 33 C3 3C RX:无

<Layer>1 个字节: 图片显示层设置,取 0x00 同 0x70 指令,取 0xff 同 0x71 指令。

< Photo_num >1-2 个字节:保存在智能终端 Flash 存储器的图片位号。

<Xs> <Ys>4 个字节: (Xs,Ys) 表示要剪切区域在原图的左上角坐标。

<Xe><Ye>4 个字节:(Xe,Ye)表示要剪切区域在原图的右下角坐标。

<Xdis><Ydis>4 个字节:(Xdis,Ydis)表示剪切下来的图片在当前屏幕显示位置的左上角坐标。 举例:

AA 9b ff 05 00 0A 00 96 00 64 01 36 00 64 00 64 CC 33 C3 3C

把第五幅图片的(10,150)到(100,310)的区域剪切下来,放置在当前屏幕项层的(100,100)位置,效果如下图,此时如果更换底层背景图片,不会对裁切的图片有影响。

4.9.4连续图片播放显示(0x9c)

TX: AA 9c <Layer> <Mode> < Timer> <xadd> <yadd> <Photo_num_1> < Photo_num_2> <Photo_num_n> CC 33 C3 3C

RX:无

〈Layer〉1 个字节: 图片显示层设置, 取 0x00 同 0x70 指令, 取 0xff 同 0x71 指令。

<Mode>1个字节:连续循环次数,其中 0x00表示停止当前循环(该值下仍可显示 Photo_num_1的图片),0xff表示无限循环显示。< Timer>1个字节:每次切换图片的时间间隔为 Timer*5ms,最小值为 40ms。

〈xadd〉〈yadd〉 4 个字节:(xadd, yadd) 为显示图片的起始位置。 Photo_num_x 为依次显示的图片位号。

〈Photo_num_n〉2 个字节: Photo_num_x 为依次要显示的保存在智能终端 Flash 存储器的图片位号。

4.10 背光控制 (0x5E , 0x5F)

4.10.1 背光关闭(0x5E)

TX: AA 5E CC 33 C3 3C

RX:无

将液晶屏背光关闭。

4.10.2 背光打开(0x5F)

TX:AA 5F < Pwm> CC 33 C3 3C

RX:无

➤ 〈Pwm〉1 个字节:调节背光亮度,取值 1-100,100 时为最大亮度,上电默认 100。部分模块不支持此功能,在指令中无需包含此字节。

将液晶屏背光打开。无背光调节功能的模块,打开背光直接发送指令 "AA 5F CC 33 C3 3C"即可。

4.11 参数配置(0xE0)

TX: AA 55 AA 5A A5 <Tft_id> <Bps_set> <Paral> CC 33 C3 3C

RX:无

- ▶ 〈Tft_id>1 个字节:保留,取 0x00。
- > <Bps set>1 个字节:设置串口波特率,上电默认波特率为 115200bps。指令说明如下表:

Bps_set 指令值	0x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07
波特率	1200	2400	4800	9600	19200.	38400	57600	115200
Bps_set 指令值	0x08	0x09	0x0a	0x0b	0x0c	0x0d	0x0e	0x0f
波特率	28800	76800	62500	125000	250000	230400	345600	691200

▶ <Paral>个字节:保留,取 0x00。

配置的参数保存在串口智能彩色液晶显示模块的存储器中,掉电不会丢失,只需要设置一次即可。

4.12 触摸屏控制(0xE4,0x73)

4.12.1 开启触摸屏(0xE4)

TX: AA E4 66 99 69 FF CC 33 C3 3C

RX:无

开启触摸屏控制。

4.12.2 关闭触摸屏(0xE4)

TX: AA E4 66 99 69 00 CC 33 C3 3C

RX:无

关闭触摸屏控制。串口智能彩色液晶显示模块上电默认触摸屏关闭。

4.12.3 校准触摸屏模式(0xE4)

TX: AA E4 55 AA 5A A5 CC 33 C3 3C

RX : **AA F0**

进入触摸屏校准模式。

串口智能彩色液晶显示模块接收到该指令后,液晶屏四个角上依次出现蓝色十字框,用户需要用触摸笔依次点相应位置并保持几十 ms。一共需要有效点击四次。当四次点击完成后,模块返回 0xaa+0xf0 表示响应。发送该指令前需要先开始触摸屏控制功能。

4.12.4 触摸屏返回数据(0x73)

TX:无

RX: AA 73 < Xpos> < Ypos> CC 33 C3 3C

该指令为串口智能彩色液晶显示模块的触摸屏被按下,由终端上发的指令,(Xpos, Ypos)表示被触发处的坐标值,X、Y均为2个字节表示,且高字节在前传送。

4.13 蜂鸣器控制 (0x79)

TX:AA 79 < Btime> CC 33 C3 3C

RX:无

➤ 〈Btime〉1 个字节:蜂鸣器发声长度,Btime*10ms。 发送该指令后蜂鸣器发声。

4.14 键盘控制 (**0x71**)

TX:无

RX: **AA 71 < KeyValue > CC 33 C3 3C**

▶ 〈 KeyValue 〉1 个字节:表示 4*4 键盘的键值, 0x00-0x0F。

当键盘被按下后,回传键值。键值编码对应 4*4 矩阵键盘从左到右、从上到下从 0x0-0xf。